The ROYAL MARSDEN

NHS Foundation Trust

Imaging explained - a primary care guide

Adam Waldman, Consultant, Neuro-radiology, Imperial College London

Imaging referrals

- Investigating suspected intracranial tumours
- Suspected metastatic spinal cord compression

Direct GP access to CT and MRI

Why image brain tumours?

Pre therapeutic Peritherapeutic Post therapeutic

diagnosis

characterisation

type

grade

genetics

behaviour

stratification

Planning

Surgery

RT

(new targeted Rx)

Lesion delineation

Functionally eloquent normal structures

Post-surgical evaluation

Surveillance

Therapeutic response

Progression

Effects of treatment on normal brain

'Re-characterisation'

Clinical presentation

- Seizures (typically focal onset)
- Fixed focal neurological deficit; motor, sensory
- Cognitive impairment
- Headaches (very rarely sole presenting feature)

Brain tumours are relatively rare

Intracranial masses

- Intrinsic brain masses
- Primary tumours
- Metastases (esp breast, lung, melanoma, colon; not prostate
- Non-neoplastic lesions
- Extra-axial lesions
- Meningiomas
- Metastases dural, leptomeningeal, bony
- Non-neoplastic

Brain tumours

- Encapsulated gliomas (WHO grade I)
- Adult diffuse gliomas (WHO grade II) diffuse astrocytomas low grade oligodendroglioma oligoastrocytoma
- Glioblastoma (GBM, WHO grade IV) primary/secondary
- Others ependymoma, medulloblastoma, haemangioblastoma

Astrocytoma

- Derived from astrocytic cells Moderate to low cellular density Nuclear pleomorphism
- Cellular morphology variable

Oligodendroglioma

Better prognosis

(Oligoastrocy

CT

- Accessible, quick
- Good for detecting large lesions (and bones, calcification and haemorrhage)
- Limited tissue differentiation

CT

MRI

- Better lesion characterisation
- More sensitive small lesions
- Longer scan
- Contraindications
- Tolerability
- Demand on service

MRI

Multimodal MRI

The Royal Marsden

Metastatic spinal cord/cauda equina compression

- Usually bony metastases (lymphoma, myeloma)
- Central canal compromise
- Level influences clinical presentation
- Radicular compromise

MRI investigation of choice

Spinal MRI

MSCC pathways

Well defined pathway:

- Known primary cancer diagnosis
- Spinal pain suggestive of metastatic disease MRI within one week
- Spinal pain and signs (symptoms?) suggestive of cord or cauda equina compression MRI within 24 hours (sooner in some cases)
 - Sensory level, weakness, long tract signs (cord), decreased anal tone, urinary retention.

Thanks

